Parallelize 'purrr' functions
Henrik Bengtsson
Source:vignettes/futurize-21-purrr.md
futurize-21-purrr.Rmd
+
=

The futurize package allows you to easily turn
sequential code into parallel code by piping the sequential code to the
futurize() function. Easy!
Introduction
This vignette demonstrates how to use this approach to parallelize
purrr
functions such as map(), map_dbl(), and
walk().
The purrr map() function is commonly
used to apply a function to the elements of a vector or a list. For
example,
or equivalently using pipe syntax
Here map() evaluates sequentially, but we can easily
make it evaluate in parallel, by using:
This will distribute the calculations across the available parallel workers, given that we have set parallel workers, e.g.
plan(multisession)The built-in multisession backend parallelizes on your
local computer and it works on all operating systems. There are other parallel
backends to choose from, including alternatives to parallelize
locally as well as distributed across remote machines, e.g.
plan(future.mirai::mirai_multisession)and
plan(future.batchtools::batchtools_slurm)Another example is:
Supported Functions
The futurize() function supports parallelization of the
following purrr functions:
-
map(),map_chr(),map_dbl(),map_int(),map_lgl(),map_raw(),map_dfr(),map_dfc(),walk() -
map2(),map2_chr(),map2_dbl(),map2_int(),map2_lgl(),map2_raw(),map2_dfr(),map2_dfc(),walk2() -
pmap(),pmap_chr(),pmap_dbl(),pmap_int(),pmap_lgl(),pmap_raw(),pmap_dfr(),pmap_dfc(),pwalk()imap(),imap_chr(),imap_dbl(),imap_int(),imap_lgl(),imap_raw(),imap_dfr(),imap_dfc(),iwalk() -
modify(),modify_if(),modify_at() -
map_if(),map_at() -
invoke_map(),invoke_map_chr(),invoke_map_dbl(),invoke_map_int(),invoke_map_lgl(),invoke_map_raw(),invoke_map_dfr(),invoke_map_dfc()